Reg. No.		,					

Question Paper Code: 57283

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Electronics and Communication Engineering

EC 6304 - ELECTRONIC CIRCUITS - I

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. What is an operating point?
- 2. Give the methods of biasing a JFET.
- 3. What is the need of a load line?
- 4. Draw a cascade amplifier and its ac equivalent circuit.
- 5. What is body effect in MOSFET? How does it change the small-signal equivalent circuit of the MOSFET?
- 6. Give the general conditions under which common source amplifier would be used.
- 7. A bipolar transistor has parameter $\beta_0 = 150$, $C_{\pi} = 2$ pF, $C_{\mu} = 0.3$ pf and is biased at $I_{CQ} = 0.5$ mA. Determine the beta cut off frequency.
- 8. Sketch the expanded hybrid π model of the BJT.
- 9. What is a current mirror circuit?
- 10. Sketch a MOSFET cascade current source and state its advantage.

1

$PART - B (5 \times 16 = 80 Marks)$

11. (a) Compare the various methods of biasing using BJT in terms of their stability factors. (16)

OR

- (b) With neat diagrams, explain two bias compensation techniques and state its advantages and disadvantages. (16)
- 12. (a) What are the changes in the a.c characteristics of a common emitter amplifier when an emitter resistor and an emitter bypass capacitor are incorporated in the design? Explain with necessary equations. (16)

OR

- (b) (i) Calculate the small signal voltage gain of an emitter follower circuit. Given $\beta = 100$, $V_{BE(on)} = 0.7V$, $V_A = 80$ V, $I_{CQ} = 0.793$ mA, $V_{CEQ} = 3.4$ V. (8)
 - (ii) Draw and explain the operation of a darlington amplifier. (8)
- 13. (a) Design a JFET source follower circuit (Figure 13(a)) with a specified small signal voltage gain given $I_{DSS} = 12\text{mA}$, $V_p = -4\text{V}$, $\lambda = 0.01 \text{ V}^{-1}$. Determine R_s and I_{DQ} such that the small signal voltage gain is at least $A_v = V_o/V_i = 0.90$. (16)

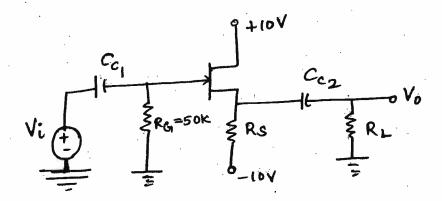


Figure 13(a)

OR

(b) Determine the small signal voltage gain of a common source circuit (Figure 13(b)) containing a source resistor. The transistor parameters are $V_{TN} = 0.8 \text{ V}$, $Kn = 1 \text{ mA/V}^2$ and $\lambda = 0$. (16)

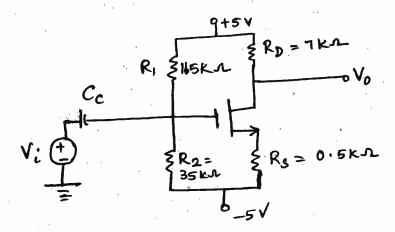


Figure 13(b)

14. (a) Determine the 3 dB frequencies and mid band gain of a cascade circuit. For the Figure 14(a) the parameters are $V^+=10~V,~V=-10~V,~R_s=0.1~k\Omega,$ $R_1=42.5~k\Omega,~R_2=20.5~k\Omega,~R_3=28.3~k\Omega,~R_E=5.4~k\Omega,~R_c=5~k\Omega,~R_L=10~k\Omega,$ $C_L=0.~The~transistor~parameters~are~\beta=150,~V_{BE(ON)}=0.7~V,~V_A=\infty,~C_\pi=35$ $pF~and~C_\mu=4~pF.$

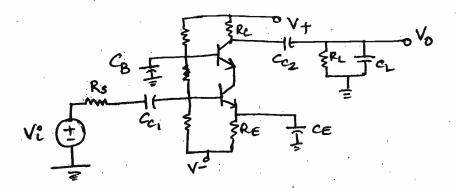


Figure 14(a)

OR

3

57283

- (b) The transistor in the figure. 14(b) has parameters β = 125, $V_{BE(ON)}$ = 0.7 V, V_A = 200 V, C_{π} = 24 pF and C_{μ} = 3 pF.
 - (i) Calculate the miller capacitor
 - (ii) Determine the upper 3 dB frequency
 - (iii) Determine the small signal mid band voltage gain (16)

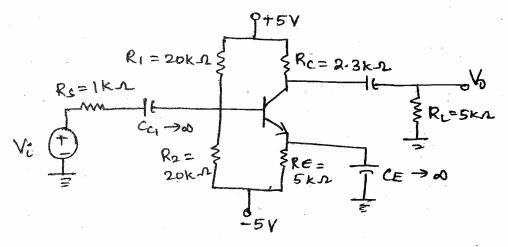


Figure. 14(b)

15. (a) For the circuit shown in the figure. 15(a) Let $V^+ = 10$ V, and $V^- = 0$ and the transistor parameters are $V_{TN} = 2$ V, $\frac{1}{2} \mu_n C_{ox} = 20 \mu A/V^2$ and $\lambda = 0$. Design the circuit such that $I_{ref} = 0.5$ mA and $I_o = 0.2$ mA and M_2 remains biased in the saturation region for $V_{DS2} \ge 1$ V. (16)

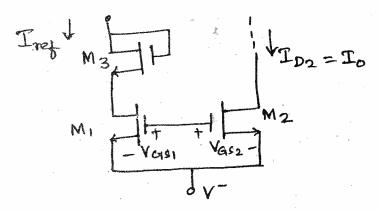


Figure 15(a)

OR

(b) With the necessary diagram explain about CMOS differential amplifier and derive the CMRR. (16)